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Abstract

We present a state space approach to extension, torsion, bending, shearing and pressuring of laminated composite
tubes. One of the novel features is that we have formulated the basic equations of anisotropic elasticity in the cylindrical
coordinate system into a state equation by a judicious arrangement of the displacement and stress variables so that the
system matrix is independent of r. The formulation suggests a systematic way using matrix algebra and the transfer
matrix to determine the stress and deformation in a multilayered cylindrically anisotropic tube under applied loads that
do not vary in the axial direction. An exact analysis of the tube subjected to uniform surface tractions, an axial force, a
torque and bending moments is presented. The solution consists of an axisymmetric state due to extension, torsion,
uniform pressuring and shearing, and an asymmetric state due to bending. The formalism indicates that extension,
torsion and pressuring interact; uniform shearing causes pure shears in the laminated tube, regardless of the number of
layers. These deformations are uncoupled with bending of the tube. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The circular cylindrical tube is a structural form frequently used in practice, especially in the offshore
engineering and infrastructure. The tubular hybrid composites are useful in drilling operations and orbiting
space structures. Analytical solutions of the deformation and stress in laminated tubes are of theoretical
interest and practical importance. The solution may serve as a guide in designing riser tubes and tubular
specimens. Also, it may be applied to many types of conductors with layers of protection and insulation.

When the tube is subjected to extension and uniform pressuring and shearing, it is in the state of gen-
eralized plane strain; when subjected to a torque at the ends and free from surface tractions and body forces,
it is in the state of generalized torsion (Lekhnitskii, 1981). Analysis of these problems of an anisotropic tube is
usually based on the Lekhnitskii stress function approach. While the stresses are determined from the stress
functions by differentiation in the Lekhnitskii formalism, the displacements cannot be expressed by the stress
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functions in simple terms. Thus the formalism is ineffective for problems of laminates in which the conditions
of interfacial continuity require the displacement as well as the traction be continuous. Extension of the
Lekhnitskii formalism to layered cylinders has been done (Jolicoeur and Cardou, 1994; Chouchaoui and
Ochoa, 1999), in which the solution expressions for each layer are determined first, and satisfaction of
the interfacial continuity conditions and boundary conditions is then enforced. The solution scheme is
straightforward, but due to the layerwise treatment, one has to deal with a very large system of equations for
the undetermined constants in the stress and displacement expressions. Alternatively, one could use the
displacement approach by deriving the governing equations in terms of displacements and seeking for the
solution. The stress expressions in terms of the displacements now become very complicated. When applied
to a multilayered system, one also has to confront the heavy task of dealing with a large system of equations.
Using the displacement approach, Pagano (1972) solved the problem of a homogeneous, cylindrically an-
isotropic hollow circular cylinder under 2D surface tractions. Kollar and Springer (1992) and Kolldr et al.
(1992) presented a stress analysis of anisotropic laminated cylinders subjected to hygrothermal and me-
chanical loads. Indeed the displacement approach lead to unwieldy stress expressions and intricate solutions.
The problem of a cylindrically anisotropic circular tube subjected to pressuring, shearing, torsion and ex-
tension was also studied by Ting (1996, 1999) and Chen et al. (2000). Their works were restricted to the
axisymmetric deformation of a homogeneous tube in which the stress depends on r only.

In view of the drawbacks of using the stress or the displacement alone as the primary variables, it is
sensible to formulate the problem in a state space framework in which the stress as well as the displacement
are the state variables. Herein we develop a state space approach to the problem of multilayered cylin-
drically anisotropic tubes subjected to tractions that do not vary axially. Cylindrical anisotropy is not
uncommon in cylindrical bodies, for examples, it appears in natural bamboo, tree trunk and carbon fiber
(Christensen, 1994). The metallic forming process, such as extrusion or drawing, may result in cylindrically
anisotropic products. The filamentary wound composite is a cylindrically orthotropic material on the
macroscopic scale. To model the laminated composite tube produced by filament winding, we consider that
the tube is composed of cylindrically monoclinic anisotropic layers. The cylindrical orthotropy is included
as a special case. In a state space formulation an important step is to express the field equations in a state
equation in which the unknown is the state vector. For problems of laminated tubes it is natural to take the
displacements u,, ug, u. and the transverse stresses o,, g,., g,9 as the primary state variables because the
interfacial continuity conditions and the boundary conditions are directly associated with them. However,
the field equations in the cylindrical coordinates are much more complicated than those in the Cartesian
coordinates (Wang et al., 2000). If special arrangements are not made, the system matrix is inevitably r-
dependent, making the state equation unsolvable by means of matrix algebra. To avoid this situation, we
judiciously take ro,, ra,., ra,s instead of a,, 7,., 0,9 as the stress variables and cast the field equations into a
first order matrix equation with respect to r. It turned out that the system matrix is then independent of r so
that it is possible to determine the solution for the laminated tube using methods of matrix algebra in
conjunction with the transfer matrix. The transfer matrix transmits the state variable vector from the inner
surface to the outer surface and takes into account the interfacial continuity and lateral boundary con-
ditions in a simple manner. Its determination requires only matrix operation and eigensolutions of 6 x 6
matrices regardless of the number of layers.

In this paper we develop the state space formalism to treat the generalized plane strain, generalized
torsion and bending problems of laminated composite tubes. An exact analysis of the tube subjected to
uniform tractions on the inner and outer surfaces, and an axial force, a torque and bending moments at the
ends is presented. To simplify the operation the characteristics of the eigensolution of the system matrix are
used to advantage in deriving the fundamental transfer matrices that are essential for the analysis. The
approach is verified by applying it to a cylindrically anisotropic homogeneous tube. The exact solutions of
the tube under pressuring and bending in anisotropic elasticity are reproduced. It is further examined by a
numerical example on bending of a laminated composite tube. Numerical results on the displacements and
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stresses through the thickness are computed following the solution procedure using Mathematica (Wol-
fram, 1996).

2. State space formulation
2.1. Problem statement

Consider a circular tube composed of 7 anisotropic layers as shown in Fig. 1. Referred to the cylindrical
coordinates (r,0,z), the material is cylindrically anisotropic having reflectional symmetry with respect to

the cylindrical surfaces » = constant at each point. The stress—displacement relations of the material are
(Lekhnitskii, 1981)

Oy ciu ¢ c3 cu 0 0 Uy
0 0 r(ugo + u,)
g9 Cl2 Cxp €3 Cpu Ugp T Uy
0 __ | €13 (€23 (33 C34 0 0 U, (1)
= -1
0oz g cu cu cua 00 Ugz + 1 Uz 7
Oz 0 0 0 0 Cs5  Csg U, + Uy z
-1 -1

09 | 0 0 0 O cs6 cos ;|7 trotug,—r uy|,

where g,,0y,...,0, are the stress components; u,, uy, u. are the displacements; ¢;; are the 13 elastic con-

stants of the cylindrically monoclinic anisotropic material; a comma denotes partial differentiation with
respect to the suffix variables; the subscript k denotes the kth layers. Henceforth, k runs from 1 to n unless
indicated otherwise.

An important class of the material under consideration is the fiber-reinforced composite produced by
filament winding, which may be regarded as a cylindrically orthotropic material with the fiber direction
oriented by a helix angle to the z-axis. In this case the 13 constants ¢;; in Eq. (1) are derivable from nine
independent ones by a rotation about the radial axis.

Fig. 1. A multilayered laminated composite tube.
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o

Fig. 2. A schematic configuration of the tube subjected to uniform tractions and end loads.

When the tube is subjected to the end loads and surface tractions that do not vary in the z-axis, as shown
in Fig. 2, the stress is independent of z . The basic equations of equilibrium in the cylindrical coordinates
(Lekhnitskii, 1981) are

(g + r710r0,0 + }"71 (O-r - 0-0) +R= 07 (2)
G0, + 7710()70 + 27’710_7‘0 +6 = Oa (3)
Oz + rila()z‘() + rilarz = 07 (4)

where R, @ denote the body forces in the coordinate directions r, 0.
The boundary conditions on the inner and outer surfaces are

[Ur 070 O'rz}lz[_[’a Ta Sa} onr=a, (5)
(6, 6w oeli=l-p w s] onr=b, ©)

where p,, p, are the internal and external pressure; 7, 7, are the uniform in-plane shears, s,, s, the uniform
anti-plane shears. For static equilibrium the prescribed tractions must satisfy the conditions t,a*> = 7,6*> and
S.a = spb.

The end conditions require that the stress resultants reduce to an axial force P, a torque M,, and bi-axial
bending moments M;, M,, such that

n 2n T
3 / / (r.) drd0 = P, (7)
k=1 J0 k-1

n 2n Tk
Z / / (VUGz)krdrdQ = Mt, (8)
k=1 Y0 k-1
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n 2n rk
> /0 / (ro.),rsin 0drdo = M,, (9)
k=1 Tr—1

n 2n I
> / / (ra.),rcos 0drd0 = M, (10)
k=1 J0 Tk—1

where 7,_; and 7, denote the internal and external radii of the kth layer, thus ry = a, r, = b.

The conditions that the resultant shears vanish at the ends are satisfied identically when the stress is
independent of z (see proof in Appendix A). We note that Egs. (7)-(10) are the resultant form of the
traction boundary conditions. Using them implies that the end effect is neglected.

The interfacial continuity conditions require

[, wo w. o, 064 Ozl =|u uy w. 6, G Ol (11)

onr=rfork=1,2,...,n—1.
For the problem under study the stress is independent of z, but the displacement may depend on z. The
general expressions for the displacement field (Lekhnitskii, 1981) are

2

u, = u(r,0) —%(A cos 0 + Bsin 6) + z(w, cos @ — w; sin ) + ugy cos O + vy sin 6, (12)
2

ug =o(r,0) + E(A sin 0 — Bcos 0) + ¥rz — z(wy sin 0 + w) cos 0) + ws3r — ug sin 6 + vy cos 0, (13)

u, = w(r,0) + z(Arcos 0 + Brsin 0 + &) + r(w sin 0 — w, cos 0) + wy, (14)

where u, v, w are unknown functions of r and 8; uy, vy, wy, w1, w,, w3 are constants characterizing the rigid
body displacements; the constants ¢ is a uniform extension, ¥ is the twisting angle per unit length along z-
axis, A and B are associated with bending of the tube. In order to satisfy the interfacial continuity con-
ditions, it is necessary that these constants be the same for all layers.

2.2. State equation

Derivation of the state equation based on Egs. (2)—(4) as they stand will result in a system matrix with
variable coefficients, not solvable using matrix algebra (Pease, 1965). Aiming at formulating the field
equations into a system of first order differential equations with respect to r, we rearrange Eqs. (2)—(4) as

(ro,), + 0r09 — 0o + 1R =0, (15)
(ro,0), + 009+ 0,9 + 70 =0, (16)
(rarz)ﬂr + 00z,0 = 0. (17)

The transverse stresses with respect to r are much more concise in Egs. (15)—(17) than in Egs. (2)—(4).
This prompts us to take ro,, ro,, ro,.. instead of g,, g,9, 6. as the stress variables in deriving the state
equation. Thus, taking u,, ug, u., ro,, ra,q, ro,. to form the state vector and expressing ray, ra,, rag, in terms
of them, we derive in Appendix B the matrix differential equation:
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u, —C12 dis d13 Cfll 0 0 u, 0
Up —69 1 0 0 S55 S56 Ug 0
3 u; _ 7’71 —r@z 0 0 0 S56 S66 u, _ 0 (18)
or | ro, Q22 dyp dug C12 -0y O ro, R |’
TGy —0»0y dsy ds3 —Cn0p —1 0 | |roy r@
ro,; —040) dep des —Cuulp 0 0 70, 0
rog 01 000y + 0ur0. 00y + 010, U Cin
ro. | = | On 02309+ 0urd.  030g+ Q5310 | | ug | + | é13 | 7o, (19)
rog; Or 02409 + Our0,  Qag0p + Or0; u, Ci4

where 0y, 0. denote partial derivatives with respect to the suffix variables, and

diy = —(€120g + ¢1410.), diz = —(C140g + ¢1370;), da = 000y + Our0;,
diy = 000y + 00310., dsy = —0p(020p + 0r0.), ds3 = —0p(Q2409 + 0310.),

dey = —09(02409 + Q4ar0.), de3 = —09(Q440p + Q3470.),

S56  S66 Cs5Ce6 — C3g | —Cs6 €55

N Ss55 856 1 Co6  —Cs6
Cij:ij/clla Qij:Cij_cliclj/cll; |: — 5 .

On substituting Eqgs. (12)-(14) in Egs. (18) and (19), these equations in the absence of the body forces
become

u —C2 —¢120p —C1409 Crll 0 0 u —cCj3¢c080
v _69 1 0 0 855 S56 v 0
ri w _ 0 0 0 AO S56 S66 w + A}"Z 0
or | 70, O 020y 01409 ¢ -0y O ro, 0»3cos 0
¥y =020 —020p —0u0p —C120g —1 0 | |roy (0% s@n 0
o, —010) —010p —QOulp —C140p 0 0 | |ro. O34 8in 0
—6’13 Sin 9 —6'13 0
0 0 0
0 0 0
Br? . 972 20
e Q>3 sin 0 o O3 o 0On4 (20)
—(»3cos 0 0 0
—Q34cos 0 0 0

ray 0n 020 020 u Ci O O

Yo, = Q23 Q2369 Q3469 v+ 613 ro, + (A}"Z COSQ+BF2 Sil’l0+ 87') Q33 +19r2 Q34 .

roy; O Q2469 Q44ae w Cl4 O3 Ou
(21)

In Eq. (20) 7! is a common factor of the system matrix and has been taken out to the left hand side so
that the system matrix is independent of r. This makes it possible to solve the state equation using matrix
algebra and the transfer matrix—it could not have been done without taking ra,, ro,¢, ro,. to be the stress
variables.



J.-Q. Tarn, Y.-M. Wang | International Journal of Solids and Structures 38 (2001) 9053-9075 9059

3. Solution using transfer matrix
3.1. Solution to the state equation

A close examination of Eq. (20) led us to assume the solution in the form

U, (r) U,(r)cos 0 Us(r)sin 0
v Vi(r) V5(r) sin 6 Vi(r) cos 6
w | | W(r) Ws(r) sin 0 W;(r) cos 6
ra, | | Xi(r) + X,(r) cos + X;(r)sin@ |’ (22)
FOg Yy (r) Y>(r)sin 6 Y3(r) cos 0
ro,, Zy(r) Z(r)sin 0 Z5(r)cos 0
in which Uy, Vi, ..., Z; are three sets of unknown functions of ». The part with a subscript 1 represents an

axisymmetric state due to extension, torsion, uniform shearing and pressuring. The other parts are useful
for the asymmetric state due to bending.

Substituting Eq. (22) in Eq. (20) yields three sets of uncoupled systems of first order ordinary differential
equations. Written in a compact form, they are

(1)
d |y, Ny Np | |U du | 2| 0
— = u 9 23
rd7’|:slj| |:N13 -NI, | [S e b | o ? ) @)
ral)) On ¢ 0n ] Oxn
rol) | = | On Ui+ |3 [Xi+er| O | + 97| Ou |, (24)
rol) on an O34 | Ou
where
U =[U N Wl]Tv Si=Xxi n Z ]T, S [—5‘13 0 0}T7 ¢, =[0xn 0 O}Tv
—¢1p 0 0 Cfll 0 0
0i=[04 0 0", Ny=| 0 1 0|, Nuo=NL=1]0 s s5|,
0 0 0 0 56 Ses
On 0 0]
Ns=N,=|0 0 0
0 0 0
()
d U, Ny Ny |[[U;] 2| Do
J— = A u 2
sl Nls] 8] s
ral) On On Oul|[Us cn O
re® | = [ Qs On Qu||W |+ |és|X+4r| Qs |coso, (26)
raf,? O O Qu| W Ci4 O
where

U=[U K W' S=[X ¥ 2], $p=[—¢3 0 0}T7 b =[0n On Oul,
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—Cip —Cp —Cus On On Oxn
Ny = 1 1 0 , Ny =Njp, Np= NL =|(0n 0On Ou|.
0 0 O O QOu
(3)
d [ U N3 Nip _Ua 2| Dus
= : B u 2
"dr [Ss ] {NB -N;, | [Ss o s |’ @7
ro, 5;3) On —0n —0un U; C2 O»3
reld | = Op —0xn —0u i |+ | éis | X+ B | O sin 0, (28)
ro'g) O —0u —0u| | W Ci4 O

where
Us=[Us 15 ], Si=[X 4 Z], ds=[—¢3 0 O]T, b3 =105 —0n —0ul,

—C12 Ci2 Cus

On —0On —0xn
Ny=|-1 1 0], Nyp=Np, Nuy=N,=|-0n 0On O
0 0 0 —0u Ou  Qu

At this stage it is easily shown that the end conditions (9) and (10) are satisfied identically by Eq. (24),
leaving (7) and (8) for the ¢ and ). Thus, ¢ and 1 are related to P, and M,, unrelated to M, and M,. The end
conditions (7)—(9) are satisfied identically by Eq. (26), leaving (10) for the 4 so that A is related to M,,
unrelated to P, and M,. Similarly, B is related to M, via (9), unrelated to P. and M,.

Egs. (23), (25) and (27) may be expressed in short as

r%X(r) = AX(r) + (7). (29)

To solve Eq. (29), let us introduce a change of variable

X

r=e, x=logr, (30)
to reduce it to

%X(x) = AX(x) + f(e"). (31)

Eq. (31) is a standard first-order matrix differential equation with a constant coefficient matrix (Pease,
1965), whose solution is

X(x) = P(x — x0)X(x0) + (), (32)
where

P(x — xg) = e* ), (33)

aw = [ Pl (e dn. (34)

The solution of Eq. (29) is obtained by replacing x by log r in Egs. (32)—(34), yielding
X{(r) = P(r/ro)X(ro) + q(r), (35)
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where
P(r/ro) = (r/ro)", (36)
a) = [ RGO e (37)

0

The fundamental transfer matrix P given by Eq. (36) is a formal expression involving the function of a
matrix. To express it in an operational form it is necessary to determine the eigensolution of A. One useful
operational form is

P(r/ro) = (r/ro)* = M{(r/ro) )M, (38)

which is obtained by uncoupling Eq. (29) through diagonalization, where ((r/r,)") denotes the diagonal
matrix consisting of the distinct eigenvalues A associated with A. When A has repeated eigenvalues and is
non-semi-simple (Pease, 1965), the Jordan matrix takes the place of the diagonal matrix. M is the modal
matrix of A, consisting of the eigenvectors associated with the distinct eigenvalues and the generalized
eigenvectors associated with the repeated eigenvalues.

To use Eq. (38) M needs to be determined. This of course can be done by direct inversion but it takes a
great deal of computation for a laminate composed of many layers. The inversion computation could be
alleviated by making use of the orthogonality properties of the eigenvectors of A. For the sake of clarity we
summarize the characteristics of the eigensolution of A in Appendix C.

3.2. Solution for a multilayered system

Eq. (29) can be written for each layer in a laminated tube as

r%Xk(r) =AXe(r) +1:(r), ma<r<n. (39)
The solution to Eq. (39) is

Xi(r) = Pe(r/ri-1)Xi(rie-1) + e (r), (40)

where
Pi(r/rin) = (r/re)™, (41)
w()= [ PO de ®2)
-

The interfacial continuity conditions (11) are satisfied by letting

Xpo1 (%) = Xe(ry)- (43)
There follows

Xir1(ri) = Pr(re/ri1)Xe(ri1) + i (re), (44)

fork=1,2,...,n—1.
On transferring the state vector from the inner surface outward, we obtain

X(r) = Te(r)Xi(a) + ¢ (r), 11 <r <y, (45)

where
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P,(r/a) k=1

1) = { Pi(r/ri1)Tici(re—1) k=2,3,...,n, (46)

q(r) k=1
W) = 4
) {Pk(r/rk—1)¢k1(rk—l) +qi(r) k=23,....n )

Setting » = b in Eq. (45) gives
X(b) = T,(b)Xi(a) + ¢,(b). (48)

This relation connects the state vectors on » = a and b where the boundary conditions (5) and (6) are
prescribed. To facilitate satisfaction of Egs. (5) and (6), let us express Eq. (48) as

] =Trm Tl[ee@] - [ea] ®)

The boundary conditions (5) and (6) demand

Si(a) = [—ap. ar, as.], Si(b)=[—bp, br, bsy], (50)

Sy(a) = Ss(a) =0, Sy(b) = S;(b) =0. (51)
Imposing Egs. (50) and (51) on Eq. (49) and solving for the unknowns on r = a yields

Ui(a) = T, (b)[S1(b) — Tys(b)S1(a) — ¢, (D)), (52)

Us(a) = =T (b) (), (53)

Us(a) = =T, (5)$y3(b)- (54)

Substituting Egs. (50)-(54) in Eq. (45) gives us the displacement and transverse stress variables through
the thickness:

)= T[]+ 4], 9

It should be noted that uniform surface tractions enter the picture through the boundary conditions (49),
resulting in an axisymmetric state in the tube. Uniform shearing and pressuring cause only axisymmetric
deformation without bending.

4. Axisymmetric state

The applied loads that give rise to an axisymmetric state include an axial force and a torque at the ends,
and the internal and external pressure, uniform in-plane and anti-plane shears on the inner and outer
surfaces. They produce extension, torsion, radial contraction and circumferential deformation, but not
bending of the tube.

The governing equation for the axisymmetric state is Eq. (23). Determination of the fundamental
transfer matrix requires the eigensolution of A;. The eigenvalues of A; are

=0, Ja=1, J=(enfen)?, =0, is=—1, J=—(cn/en)"?, (56)
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of which 4, = 0 is a repeated one, thus only one corresponding eigenvector ¢, is determined in the usual
way. The generalized eigenvector ¢, is determined by means of the Jordan chain Ag, = A4¢@, + ¢, with
Aqa =0.

On determining the eigenvectors, the modal matrix is formed as

0 0 mn 0 0 —1
0 1 0 —sss5” —s55/2 0
M, — |6 0 0 0 —s5 0 (57)
0 0 0 0 m |’
0 0 0 0 1 0
0 0 0 se” 0 0 ],
where
m= (4011022)71/4, n = (011022)1/2 +cn, = (011022)1/2 — Ci2-
By Eq. (C.3) in Appendix C we have
0 0 57 0 ssese”” 0
0 1 0 0 S55/2 Ss56
M- muw 0 0 0 0 58
0 0 0 0 0 s (58)
0 0 0 0 1 0

-mx 0 0 n 0 01,

It can be verified indeed MM, ' = 1. Substituting Egs. (57) and (58) in Eq. (38), replacing the diagonal
matrix by the Jordan matrix for the repeated eigenvalues A, = 1, = 0, we obtain

pu 0 0 pus 0 0
0 7r/me1r 0 0 sss(r/ree1 — 11 /r) /2 —sse(l —7/rey)
o 0 0 1 0 556(1 —r/rk,l) S6610g(}’/}"k,1)
P(I”/I’k,l) = pai 0 0 Pas 0 0 s (59)
0 0 0 0 rk_l/r 0
0O 0 0 0 0 1 i
where
K= (022/011)1/27

pi = [pa(r/n) (/) "]/ 2en),  pa=[(r/r1)" = (r/re1) "]/ (2ren),

pa = wna(r/re1)” = (r/rica) "]/ 2renn),  paa = pa(r/rea)” + wa(r/ria) ™/ (2kcn).
The non-homogeneous terms in Eq. (23) consist of two parts:
f,(r) =rg, =re[—cisfen 0 0 On 0 0], (60)
and
f(r)=r’g,=r[0 0 0 0y 0 0],. (61)

For f,(r) = rg, the matrix A, — I is singular so that (A; —I)~' does not exist. When ¢, # ¢y, the vector
annihilated by Al —Tis[0 1 0 0 s55/2 s ]Z which is orthogonal with g,. It can be shown that (A; —
I)z; = g, has the solution
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&

7 = [(c3—ca) 0 0 [ci3(cn+cin) —cm(en+cp)] 0 0}27 (62)

B Cit — €2
so that the particular solution associated with rg, is obtained from Eq. (C.5) as
q.(r) = [ P(r/riy) — rl)zy. (63)

In the case of cylindrical orthotropy, ¢i; = ¢, Eq. (63) does not hold. Ungler this circumstance, an
additional vector in the null space of AE —1is [1 —cnfen 0 0 ¢ O 0] , Which is not orthogonal
with g,. The particular solution is

q.(r) = [ P(r/rioy) — rllhy — [y logr | P(r/ri_y) — rlogrijhy, (64)
where
b =B 0 0 ey 0 o,
4C11
h2:M[l 0 0 cpp + o 0 0];5
2C11
For f;(r) = r’g, the particular solution is
Q.(r) = [r  P(r/riy) — Pz, (65)
where
. o U0n T
Zz—(Ak—ZI) gz—i[l 0 0 (2011+012) 0 O]k’ (6‘22754011).
¢ —4en

For brevity we do not consider the rare case of the layer material with elastic constants ¢y, = 4¢y;.
Carrying out the multiplication in Egs. (63)-(65) leads to

6 =[a() 0 0 () 0 0] (66)
With Egs. (59) and (66), Eq. (35) is uncoupled to

)= i me ][]+ (462 @

)= [0 Sl [a o e 1[60] <68>

Yi(r) = (a/r)Yi(a),  Zi(r) = Zi(a). (69)

It can be seen that Y; (r) and Z; (r) cause axisymmetric deformations. Using Eqgs. (46) and (50) along with
Eq. (69) results in

a,(r) = ‘ca(a/r)z, 0,.(r) = sqa/r. (70)

This is a remarkable result in that the uniform shearing causes pure shears in the laminated tube of
monoclinic cylindrically anisotropic materials, regardless of the elastic properties and the number of layers.
Since uniform shearing does not produce oy, and o, and is independent of 4, B, C and ¢, it is unrelated to P,
and M,.

As a check of the validity of the approach, let us apply it to the plane deformation of a cylindrical
anisotropic homogeneous tube under external pressure p,. The solution of the problem can be found in
Section 42 of Lekhnitskii’s monograph (1981).



J.-Q. Tarn, Y.-M. Wang | International Journal of Solids and Structures 38 (2001) 9053-9075 9065

The boundary conditions on » = a and b reduce to X;(a) = Yi(a) = Z;(a) = 0 and X, (b) = —bp,, Y1(b) =
Zi(b) = 0. Setting ¢ = ¢ = 0 for the plane deformation, there follows from Egs. (63)-(69)

01(r) = qa(r) = Vi(r) = Wi(r) = Yi(r) = Zi(r) = 0. (71)

With Eq. (71), the displacements and stresses are obtained as follows:

upy=u,=0, o6,9=0.=0, (72)
_bpb 1 K 1 2K —K
U, = c 73
1_02K<’<011+012p +K011—C|2 P 73
—Pp K— Ko —K—
0= 5 (P =), (74)
_K . .
00 =7 (0 ), (73)
v, = Py [(Kcizton o Kz —Cx o) (76)
1 —c* \ keyy +cn Kei — €12
—Db KCla +Cu | KCl4—Ci 50
- R L) ’ 77
L IR <K6’11 +cn Ken —cn g ) 7

where ¢ = a/b, p =r/b, (c<p<1).
The above solution is in accordance with Lekhnitskii’s solution. In Lekhnitskii’s monograph the solution
for the displacement was not obtained.

5. Bending

When the tube is subjected to a bending moment at the ends, the deformation and stress fields depend on
0. In view of the geometrical symmetry and cylindrical anisotropy, the deformation and stress at (r, 0) due
to a bending moment about x;-axis are equivalent to those at (r, 0 4+ n/2) due to a bending moment of the
same magnitude about x;-axis. It follows that bending may be treated by considering either M; or M,. The
response due to bi-axial bending can be obtained by superposition. We consider the bending due to M, with
which the constant A4 is associated.

The governing equation for bending due to M, is Eq. (25). For a laminated tube with specific layer
properties the eigensolution of A; can be easily obtained numerically. On forming the modal matrix, it is
straightforward to determine the displacement and stress in the tube. To facilitate analysis we derive in the
following the analytic expressions for the fundamental transfer matrix and the particular solution for cy-
lindrically orthotropic materials.

For cylindrical orthotropy, c14 = ¢oy = ¢34 = ¢s¢ = 0, the eigenvalues of A, are

j~l = Oa AZ =, }'3 = ﬁv j'4 = 07 j~5 = —q, j'6 = _ﬁ7 (78)

where

o= (14+cn/cii —2cin/cni +555Q22)1/2, p= (044/066)1/2-
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Using the eigenvectors the modal matrix is formed as

—ki @y O 0 o5 O
ki ¢0n 0 @p @5 0
0 0 ¢33 O 0 ¢
0 kb 0 ¢y kb 0] (79)
0 ky 0 @45 ko O
0 0 ¢ O 0 9,

My

where the expressions of &y, k, and ¢,; are given in Appendix D.
By Eq. (C.3) the inverse of M is written out immediately as

Pag Pys 0 0 ) 0
ky ky 0 —0s51 —0sy 0
-1 _ 0 0 Pe6 0 0 —Ps3
Me=1lo o 0 -k kK 0 | (80)
—ky  —ky 0 3 (5] 0

0 0 — P36 0 0 P33 |

Indeed M,(M,;1 = I. Substituting Egs. (79) and (80) in Eq. (38), replacing the diagonal matrix by the
Jordan matrix for the repeated eigenvalues 4, = /4 = 0, we obtain

1 +pi P2 0 Pia Pis 0
P2 l4+py O Do D2s 0

0 0 P33 0 0 D36
P 1) = 1
(r/rir) P41 P 0 14ps4 DPas 01" (81)
D41 P4l 0 Ds4 l+ps O
0 0 p63 0 0 p33 &

where p;; are functions of r/r,_,, the expressions are given in Appendix D.
The non-homogeneous term in Eq. (25) is

fk(}") = }"zgk = I'ZA[—6’13/C11 0 O Q23 Q23 0]: (82)
The matrix A, — 2I is non-singular, by Eq. (C.5), the particular solution is
4 (r) = [ P(r/rir) =PI (A = 21) g (83)

From a mathematical point of view there may exist a combination of the elastic constants such that «

and f in Eq. (78) are precisely equal to 2, making A, — 2I singular. However, this peculiar combination
hardly occurs and does not warrant a special treatment.

To verify the state space approach we apply it to bending of a cylindrically orthotropic homogeneous
tube with inner and outer radii being a and b. The solution can be found in Section 43 of Lekhnitskii’s
monograph (1981). In obtaining the analytic solution by Egs. (81)—(83) the software Mathematica is used to
advantage. The particular solution is obtained as

() = [$s(r) ¢o(r)]" = —An[@®P(r/a) = N[x 1-% 0 1 1 0], (84)
where

_ ces[c3 (11 + c12) — c13(en + ¢12))]
Cl1Cn — C%z + coo(cn — 2¢13 — 3eny)

_ 3w + ca3¢12 + ce(c3 — 3ci3)
2[cas(enr + c12) — ciz(can + c12)] ’
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The boundary condition (53) gives us

Us(a) = =T, (b)$(b) = Aa’nh[1 1 O], (85)

Su

_ pa(b/a) + pis(b/a) + psa(b/a)] — (b/a)’ +1
2py(b/a) .

Using Eqgs. (84) and (85) in the formulation yields the displacements and stresses in the tube as follows:

h

U, [2U(p) — (z/b)* /2] cos O
up | = Ab* | [V (p) + (z/b)*/2] sin 0 |, (86)
u; p(z/b)cos B
(6, o] Aicz [X(p)cosO Y(p)sin0], (87)
a _Abc2 On On||U(p) Ci2 2| Ons
)= (8 Sl (e v G oo ®
O,z = 0pg; = Oa (89)

where ¢ = a/b, p =r/b, (c<p<1), and

Ulp) = n{h[1 +2pp2(p/c)] — pia(p/c) — pras(p/c) — pis(p/e) +%[(p/c)’ — 1]},
V(p) = n{h[l +2pp2(p/c)] — pai(p/c) — pu(p/c) — pas(p/c) + (v — D(p/e)* — 1]},
X(p) = nl2hps(p/c) — pai(p/c) — pss(p/c) — psa(p/c) + (p/c)* — 1],

Y(p) = n[2hpsi(p/c) — par(p/c) — pss(p/c) — psa(p/c) + (p/c)’ — 1].

The constants A is related to M, and can be determined through the end condition (10). The validity of
the solution has been checked using Mathematica and is found in agreement with the stress expressions
given by Lekhnitskii.

The approach is further examined by applying it to bending of a [0°/90°/0°] composite laminated tube
composed of graphite/epoxy laminae, where 0° is the axial direction. The material constants used in the
computation are E; = 138 GPa (20.0 x 10° psi), E; = E; = 14.5 GPa (2.1 x 10°® psi), G, = Gj3 = Gz =
5.86 GPa (0.85 x 10 psi), vi» = vi3 = vo3 = 0.21. The radii of each layer are a = r, = 20 mm, r; = 30 mm,
r, =40 mm, b = r; = 50 mm. An exact analysis on bending of a multilayered composite tube of a cylin-
drically anisotropic material is not found in the literature. Numerical results on the displacement and stress
distribution can be easily computed following the present solution procedure using Mathematica. Figs. 3-7
show the displacements and the stresses at z=0, 6§ = 0 and 90° (where the displacement and stress are
maximum) in the radial direction of the tube under a bending moment M, = 1 KNm. The radial and
circumferential displacements u, and uy are continuous through the thickness, the axial displacement . is
zero at z = 0 for bending. The stress distribution indicates that the radial stress g, and the transverse shear
stresses ag,4 are continuous on the interfaces as expected. The axial stress o, is larger than the other stress
components by an order of magnitude, indicating that the axial stress is dominant and the radial, the hoop



9068

J.-Q. Tarn, Y.-M. Wang | International Journal of Solids and Structures 38 (2001) 9053-9075

or

_1F

§ -2 f
T L
S [
3 -3f
_4 _

20 25 30 35 40 45 50
r (mm)

Fig. 3. Radial displacement u, at 0 = 0° through the thickness.
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Fig. 4. Circumferential displacement uy at 0 = 90° through the thickness.
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Fig. 5. Radial stress g, at 6 = 0° and transverse shear stress o,y at 6 = 90° through the thickness.
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Fig. 6. Axial stress g, at 6 = 0° through the thickness.
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Fig. 7. Hoop stress gy at § = 0° through the thickness.

and the transverse shear stresses are secondary for bending of the tube. The axial stress is nearly linearly
distributed through the thickness in each layer, with a jump in the 90° layer.

6. Relations between ¢, 19, 4, B and the applied loads

The solution for a general problem contains ¢, 9, 4 and B that are related to the surface tractions and end
loads. Since there is a one to one correspondence between them through Egs. (7)-(10), these constants may
be regarded as known a priori in the formulation. In practical situations, however, except for generalized
plane deformation where ¢ =9 = 4 = B = 0 may be specified in advance, normally the surface tractions
and the end loads are prescribed; ¢, ¥, 4 and B are found after the stress due to a combined action of the
applied loads is determined. An arbitrary set of ¢, 9, 4, B will not yield the stress for a combined action of
prescribed loads. Hence it is necessary to establish the relations between &, ¥4, 4, B and the applied loads.
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It has been shown that ¢ and ¢ are related to P. and M,, not to M; and M,; A is related to M,, B to M-,
and both are unrelated to P, and M,. Further, the internal and external pressure cause axisymmetric
deformation, whereas the uniform shearing gives rise to a generalized plane deformation independent of «,
9 and the bending. It follows that extension, torsion and pressuring interact, but not coupled with uniform
shearing and bending. Thus we may express the relations between ¢, 19, A, B and the applied loads as

ki kio||e kiz ki pa} I:f)z:|
_[7]. 90
[kZI kzz} {79] + {kn sz [Pb M, (%0)
k3B =M, knd=M,, 91)

where k;; are the influence coefficients.

Obviously, k; and ky; equal to P, and M, for e =1, 9 = p, = p, = 0; ki and ky, equal to P, and M, for
¥=1,¢e=p, =p, =0, and so on. Thus k;; and k,; can be found by prescribing ¢ =1, ¥ = p, = p, =0 in
the analysis to determine the P, and M, via Egs. (7) and (8). Similarly, £, and k,, can be found by pre-
scribing ¥ = 1, ¢ = p, = p» = 0 in the analysis to determine P. and M,, and so on. After obtaining k;;, the
constants ¢, 9, 4, B due to a combination of applied loads are determined from Egs. (90) and (91) by a
simple inversion.

7. Concluding remarks

The state space approach is an elegant and effective way of treating multilayered systems. In this paper
we have formulated the problems of generalized plane strain, generalized torsion and bending of laminated
composite tubes in a state space setting and developed a systematic method for stress analysis of the tube
subjected to extension, torsion, bending, uniform pressuring and shearing. Other loading cases may be
treated within the context provided that the loads do not vary axially and the end effect is neglected. We
shall report the thermoelastic analysis of laminated composite tubes elsewhere (Tarn and Wang, 2001).

By means of the transfer matrix we have derived (48) which transmits the state vector from the inner
surface to the outer surface. On » = a and b either the traction or the displacement, or a mixed boundary
conditions may be prescribed. Eq. (48) consists of six equations in six unknowns. Among the six compo-
nents of U; and S; three are prescribed and the other three are unknown. When the tube is subjected to
internal and external pressure, S; are prescribed and U; on » = a and b are unknown. When displacements
are prescribed, U; are prescribed and S; on » = ¢ and b are unknown. For a well-posed problem we can
always find a unique solution for the unknowns following the same solution procedure. Once U, and S; on
r = a are found, the displacement and stress in the tube are determined via Eq. (45).

For the problem studied here the body force is absent. In some cases the body force does present. For
instance, when the laminated tube is rotating at a constant angular velocity w about its central axis, the
centrifugal force constitutes a body force in the radial direction and produces an axisymmetric state. On
introducing R = p,r®? in Eq. (18), it can be shown that the matrix differential equation (29) takes the same
form—only the vector f(r) needs to be modified—and the transfer matrix remains unchanged. The problem
can be readily solved using the state space approach.
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Appendix A. Zero resultant shear forces

The resultant shear forces over a cross-section are

K;/A(arzcosﬂa(;zsine)de,
= k

Vy, = kz; /A (0,2 sin 0 + ¢, cos 0), dA4.
= k

Expressing them in Cartesian coordinates using
0,. = 0,co80 +0,.sinl0, oy =—0,sinb+ g, cos0,

leads to

= [ ot B=) [ @
k=1 74k k=1 74k

When the stress is independent of z, 7] can be transformed to

- Z / (o) = Z / (50, —xoodd = Z / (1), + (x0,) 0

n
= E f x(Oxhy + G,21y), ds,
k=1 7 C

in which we have used the Stokes theorem and the equilibrium equation
Oux+ 0., =0.

The integrals of x(o.n. +0.n,), and x(o.n. + o.:n,),,

9071

(A.3)

, cancel out along C, and the traction

0.1y + 0.1, 1s uniform along the inner and outer contours, thus it can be taken out of the integral in Eq.

(A.3). Set the origin at the centroid of the cross section, then ¥} = 0.
Similarly, it can be shown that

V= ; %C Y(0x:ny + 0y2ny), ds = 0.
(= k

Appendix B. 3D state equation

Using Eq. (1) we may express u,, as

Ou, ¢ . . . . . Ur _
o ! [—012 —(€1209 + ¢1470.)  — (1409 + Clsf’az)] upg | + 0111 O,
Uu;

where é,] = Cl'j/C“.
Substitution of Eq. (B.1) in Egs. (1),, (1)3, and (1)4 gives us
U,

gy = Vﬁl[sz 020 + 0410, 02409 + 02370 ] | ug | + 1204,

u;
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U,

0. =705 030+ 0410, 03 + 03370, ] [u()] + 130,
U;
U,

oo =1" (02 02409 + Oaar0.  Qus0y + Qurd. | | ug | + Cr40,,
u;

where Q;; = ¢;; — cyic1;/ci-
By Egs. (1)5 and (1), we have

Q Uy E— =0 1||u + Ce6  Cs6 - Oz )
or | u: =10, 0] |up Cs6  Css 070

Insertion of Egs. (B.1) and (B.3) in Egs. (15)—(17) yields

d I
P (ra,) =r'[On 000+ 0urd. 02ds + 0rr0. ] [M] + C120, — 0909 — IR,
u,
0 [ ]
5 (l’O'ro) = —7’7160[sz szao + Q247’6z Q2460 + Q23l”az] ug | — €12090, — 0,0 — 10O,
u. |
0 [ ]
a (ro.) = —r'0g[ Qs 020 + Quard. 044y + 03410, | g | + ¢140¢0,..
u, |

Casting Egs. (B.1)—(B.8) in a matrix differential equation, we arrive at Egs. (18) and (19).
Appendix C. Eigensolution of the matrix A

The eigenvalues /; and eigenvectors ¢; of A are determined from

A(P,- = )“i(Piv
where
NN
R

Ni, N», N; are 3 x 3 matrices, and N, = Ng, N; = Ng.
The matrix A is similar to the Hamiltonian matrix (Zhong, 1995) such that JAJ = AT, where

(o 1
AN

(B.5)

(C.1)

I is a 3 x 3 identity matrix. The characteristics of the eigensolution of A, useful to our purpose, are

1. if /; is an eigenvalue of A so is —4;
2. if ¢, is the eigenvector of A associated with 4,, JT(p,. is the eigenvector of AT associated with —/,
3. the eigenvectors ¢; of A possess the orthogonality property

0/ ;=0 (i,j=1,2,3),

(C.2)
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where the eigenvalues are set to be 4; and 4,3 = —/;, J;; is the Kronecker delta.
It follows that the six eigenvalues of A must be 4;, 4, 43, and Ay = — 41, 45 = —4s, 4 = —45. Let ¢, =
[a; b ¢ di e f}]T be the eigenvector associated with /;, then

o, Y,
o v
o, VY,
where
a, a aj d] d2 d3 as ds dag d4 ds d6
D, = |b by b3|, ®y=|e e e|, WYa=|bs bs bs|, ¥p=|es es e
¢ o i 2 fs ¢y Cs  cg Jo s Js

Using Eq. (C.2) and its transpose along with JT = —J yields

~¥, ¥ |y[® W] _[L 0
o @ |"|® ¥, [0 L

There follows

T T T T
R e S
Wl e el e (€3)

The non-homogeneous terms in Egs. (23), (25) and (27) may be written in short as
fi(r) =r"g, m=1.2. (C.4)

On substituting Egs. (41) and (C.4) in Eq. (42) and making a change of variable s = »/&, Eq. (42) can be
evaluated as

r /1
a(r) = [ él@/é)*‘kémdf]g _ [ [ aslg = b P — T - ) g
1

Tk—1

(C.5)

which holds when A; — ml is non-singular or A; — ml is singular but the vector in the null space (Pease,
1965) of A] — ml is orthogonal with g. When these conditions are violated, the particular solution must be
modified using L’Hospital’s rule.

Appendix D. Notations in bending analysis
The entries of the modal matrix (79) are
ki = [(en +¢s5)/(eness)] P fa, k= [0n/(22)]'7,
Py = kalexn — (14 a)en]/ (e 0n),
Py = ka[(1 + o)c11 — 12 + c1155502)/ (0c11022),
P33 = — P63 = (C44C66)71/4/\/§a P36 = Pes = (044‘766)]/4/\/2

©p =ki(cio +cs5)/(can+cs5), @u=h [0%2 —criem — (€11 — ¢12)¢ss),
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@45 = ki(c — cin)ess /(e +¢s5),  @sp = ka[(1 —n)cia — exnl/ (011 On),

@5y = ka[(oe — D)ery + c12 — ensss o)/ (0e11 On2)-

The entries of the fundamental transfer matrix (81) are

pu(r/rier) = keoy (r/ric1)” = kagsy (r/ric1) ™ — kipgy — 1,

pu(r/rit) = =@ 05 [(r/ri1)” = (r/ricr) "] + k¢ log(r/ri),

Pis(r/rin) = =00 (r/ri1)” + 0n@si (r/ri1) " + kg — ki log(r/ri1),
pu(r/na) = keon(r/rit)’ = kaes(r/ri) ™ + ki@,

Pu(r/ric1) = =@nes (r/1ie1)" + 005 (/1) ™ = kg — ki log(r/rit),
Prs(r/ria1) = —@n@s|(r/re1)” — (r/riea) "]+ ki log(r/riy),

pu(r/rc) = [(r/re)” + (r/re) "/2,

Ps(r/rir) = (casess) P [(r/r)’ = (/) ")2,

pa(r/ric1) = (0n/20)[(r/riet)” — (r/ri1) "],

pas(r/rier) = —ka@sy(r/rict)” + ko (r/ric1) ™ + ki g,

Psa(r/ric1) = —ka@s; (r/ri1)” + koo (r/re1) ™ = k1 gs,

pes(r/ricr) = (caaess) *[(r/rer)! = (r/r) 7).
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